Physical Chemistry Syllabus

1. Gaseous state: Deviation of real gases from ideal behavior. Vander-Waals equation of state. Critical phenomenon. The Vander-Waal's equation and critical state. Derivation of relationship between critical constants and van der Waal's constants. The law of corresponding states, reduced equation of states. Joule Thomson effect and inversion temperature of a gas. Kinetic theory of gases, ideal gas laws based on kinetic theory. Collision in a gas- mean free path, collision diameter, collision number.

2. Liquid state: Intermolecular forces, structure of liquids (qualitative description). Structural differences between solids, liquids and gases. Surface tension and its determination using stalagmometer. Viscosity of a liquid and determination of coefficient of viscosity using Ostwald viscometer. Effect of temperature on surface tension and coefficient of viscosity of a liquid (qualitative treatment only). Liquid crystals, the mesomorphic state: Classification of liquid crystals in to Smectic and Nematic, differences between liquid crystal and solid / liquid. Application of liquid crystals as LCD devices.

3. Solid state: Nature of the solid state, law of constancy of interfacial angles, law of rational indices, Miller indices, elementary ideas of symmetry, symmetry elements and symmetry operations, qualitative idea of point and space groups, seven crystal systems and fourteen Bravais lattices; X-ray diffraction, Bragg's law, a simple account of rotating crystal method and powder pattern method. Analysis of powder diffraction patterns of NaCl, CsCl and KCl. Imperfection in crystals: point defect-Schottky and Frankel defects.

4. Ionic equilibria: Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect; dissociation constants of mono and diprotic acids. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions; derivation of Henderson equation and its applications. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle. Qualitative treatment of acid – base titration curves (calculation of pH at various stages). Theory of acid–base indicators; selection of indicators and their limitations.

5. Atomic structure and elementary quantum mechanics: Black body radiation, heat capacities of solids, Rayleigh Jeans law, Planck's radiation law, photoelectric effect, Limitations of classical mechanics, Compton effect, De Broglie's hypothesis. Heisenberg's uncertainty principle, Schrodinger's wave equation and its importance. Physical interpretation of the wave function, significance of Δ and $\Delta 2$, a particle in a box, energy levels, wave functions and probability densities. Schrodinger wave equation for H-atom. Separation of variables, radial and angular functions (only equation), hydrogen like wave functions, quantum numbers and their importance.

6. **Thermodynamics:** Intensive and extensive variables; state and path functions; isolated, closed and open systems.

First law: Concept of heat, Q, work, W, internal energy, U, and statement of first law; enthalpy, H, relation between heat capacities, calculations of Q, W, ΔU and ΔH for reversible, irreversible and free expansion of gases (ideal and van der Waals) under isothermal and adiabatic conditions. Thermochemistry: Heats of reactions: standard states; enthalpy of

formation and enthalpy of combustion and its applications; effect of temperature (Kirchhoff's equations) and pressure on enthalpy of reactions.

Second Law: Concept of entropy; thermodynamic scale of temperature, statement of the second law of thermodynamics. Calculation of entropy change for reversible and irreversible processes.

Third Law: Statement of third law, concept of residual entropy, calculation of absolute entropy of molecules. Free Energy Functions: Gibbs and Helmholtz energy; variation of S, G, A with T, V, P; Free energy change and spontaneity. Relation between Joule-Thomson coefficient and other thermodynamic parameters; inversion temperature; Gibbs-Helmholtz equation; Maxwell relations; thermodynamic equation of state.

7. Electrochemistry: Arrhenius theory of electrolytic dissociation, Hydrolysis of salts, hydrolysis constant, buffer solutions, indicators and theory of acid-base indicators. Migration of ions: transference number and its determination by Hittorf methods. Conductance of electrolyte solutions, molar conductance of electrolyte and its splitting into ionic molar conductance, Kohlrausch law of independent migration of ions, ionic mobility. Application of conductance measurements: determination of degree of dissociation and dissociation constant of weak electrolytes/acids, solubility of sparingly soluble salts, and Conductometric titrations.

8. Nuclear Chemistry: Nucleus and its classification, nuclear forces, nuclear binding energy, stability of nucleus. Radioactivity: Radioactive elements, general characteristics of radioactive decay, decay kinetics (decay constant, half life, mean life period), units of radioactivity.

9. Solutions and Colligative Properties: Dilute solutions; lowering of vapour pressure, Raoult's and Henry's Laws and their applications. Thermodynamic derivation using chemical potential to derive relations between the four colligative properties [(i) relative lowering of vapour pressure, (ii) elevation of boiling point, (iii) Depression of freezing point, (iv) osmotic pressure] and amount of solute. Applications in calculating molar masses of normal, dissociated and associated solutes in solution.

10. **Phase Equilibria**: Statement and meaning of the terms – Phase, Component and degrees of freedom, Gibb's Phase rule, phase equilibria of one component system – water system. Phase equilibria of two-component system – Solid-Liquid equilibria, simple eutectic – Pb-Ag system, desilverisation of lead. Solid solutions – compound with congruent melting point – Mg- Zn system and incongruent melting point – NaCl-H2O system

11. Electrochemical Cells: Reactions in reversible cells, free energy and *Emf* of reversible cell. Single electrode potential (Nernst equation), its measurement and sign convention. Standard electrode potential. *Emf* of reversible cell from electrode potentials. Types of reversible activities, pH, and equilibrium constant. Potentiometric titration. Concentration cells with and without transference. Liquid junction potential and its elimination.

12. Colloids& surface chemistry: Definition of colloids. Classification of colloids. Solids in liquids (sols): preparations and properties – (including Kinetic, Optical and Electricalstability of colloids) Protective action. Hardy–Schultz law, Gold number. Liquids in liquids(emulsions):

Types of emulsions, preparation and emusifier. Liquids in solids(gels); Classification, preparations and properties, General applications of colloids. Micelles: Classification of surface active agents. Surfactant action, micellization and micellar interactions, Structure of micelles – spherical and laminar. Critical micellar concentration (CMC). Factors affecting the CMC of surfactants. Counter ion binding to micelles.

13. Chemical Kinetics: Order and molecularity of a reaction, rate laws in terms of the advancement of a reaction, differential and integrated form of rate expressions up to second order reactions, experimental methods of the determination of rate laws, kinetics of complex reactions (integrated rate expressions up to first order only): (i) Opposing reactions (ii) parallel reactions and (iii) consecutive reactions and their differential rate equations (steady-state approximation in reaction mechanisms) (iv) chain reactions. Temperature dependence of reaction rates; Arrhenius equation; activation energy. Collision theory of reaction rates, Lindemann mechanism, qualitative treatment of the theory of absolute reaction rates.

14. **Photochemistry:** Characteristics of electromagnetic radiation, Lambert-Beer's law and its limitations, physical significance of absorption coefficients. Laws, of photochemistry, quantum yield, actinometry, examples of low and high quantum yields, photochemical equilibrium and the differential rate of photochemical reactions, photosensitised reactions, quenching. Role of photochemical 34 reactions in biochemical processes, photostationary states, chemiluminescence.

15. Quantum Chemistry: Postulates of quantum mechanics, quantum mechanical operators and commutation rules, Schrödinger equation and its application to free particle and —particlein-a-box (rigorous treatment), quantization of energy levels, zero-point energy and Heisenberg Uncertainty principle; wave functions, probability distribution functions, nodal properties, Extension to two and three dimensional boxes, separation of variables, degeneracy. Qualitative treatment of simple harmonic oscillator model of vibrational motion: Setting up of Schrödinger equation and discussion of solution and wave functions. Vibrational energy of diatomic molecules and zero-point energy. Angular momentum. Rigid rotator model of rotation of diatomic molecule. Schrödinger equation in Cartesian and spherical polar (Derivation not required). Separation of variables. Spherical harmonics. Discussion of solution (Qualitative). Qualitative treatment of hydrogen atom and hydrogen-like ions: setting up of Schrödinger equation in spherical polar coordinates, radial part, quantization of energy (only final energy expression). Average and most probable distances of electron from nucleus. Setting up of Schrödinger equation for many-electron atoms (He, Li). Need for approximation methods. Statement of variation theorem and application to simple systems (particle-in-a-box, harmonic oscillator, hydrogen atom).

16. Chemical bonding: Covalent bonding, valence bond and molecular orbital approaches, LCAO-MO treatment of H2 +. Bonding and antibonding orbitals. Qualitative extension to H2. Comparison of LCAO-MO and VB treatments of H2 (only wave functions, detailed solution not required) and their limitations. Refinements of the two approaches (Configuration Interaction for MO, ionic terms in VB). Qualitative description of LCAO-MO treatment of homonuclear and heteronuclear diatomic molecules (HF, LiH).

Inorganic Chemistry Syllabus

Atomic Structure

Bohr model of hydrogen atom, Bohr's equation for the energy of electron in hydrogen atom, the hydrogen spectrum, limitations of Bohr theory, photoelectric effect, idea of de Broglie matter waves, Heisenberg's uncertainity principle and its significance, Schrodinger wave equation (derivation not expected), wave functions, significance of ψ (psi) and $\psi 2$, atomic orbitals, Nodal planes in atomic orbitals, quantum numbers (n, l, m), Zeeman effect, Stern-Gerlac experiment, spin quantum number (s), shapes of s, p and d orbitals. Aufbau and Pauli's exclusion principles, Hund's rule, energy level diagram of a multielectron atom, concept of effective nuclear charge, Slater's rules and applications, Electronic configuration of atoms.

Periodic Properties

Periodic trends in atomic volume, atomic and ionic radii, ionisation enthalpy, electron affinity (electron gain enthalpy), electronegativity and metallic character, Pauling's electronegativity scale, Classification of elements as s,p,d & f block.

Chemical Bonding

lonic bond – nature of ionic bond, properties of ionic compounds, radius ratio and coordination number, factors favouring the formation of ionic compounds. Lattice energy, Born-Lande equation with derivation, factors affecting lattice enthalpy, Born-Haber cycle and its applications, solvation enthalpy and solubility of ionic compounds. Covalent bond- valence bond theory and its limitations, concept of resonance, resonance energy, hybridisation and shapes of simple molecules (BeF₂, PCl₃, PCl₅, SF₆, CH₄, Ethane, ethane and ethyne) VSEPR theory, shapes of molecules and ions (NH₃, XeF₆, CIF₃, NH₄+ , H₃O+). Molecular orbital theory – LCAO method, molecular orbital energy diagram and properties of homo and hetero diatomic molecules (N₂, O₂, CO and NO), bond strength and bond energy. Polarisation of covalent bond, polarising power and polarisability of ions, Fajan's rule. Dipole moment and molecular structure – percentage ionic character from dipole moment. Metallic bonding – free electron theory, valence bond theory and band theory, explanation of metallic properties based on these theories. 15 Weak chemical forces – hydrogen bond, inter and intra molecular hydrogen bonds, effects of hydrogen bonding, van der Waals forces.

Nuclear Chemistry

Nuclear particles, nuclear forces, nuclear size, nuclear density, stability of nucleus, binding energy, magic numbers, packing fraction, n/p ratio. Nuclear models – liquid drop model and shell model. Natural radioactivity, modes of decay, decay constant, half-life period, average life, radioactive equilibrium, Geiger-Nuttal rule, units of radioactivity, radiation dosage. Induced radioactivity, nuclear reactions induced by charged projectiles, neutrons and γ rays, fission reactions, fusion reactions, spallation reactions, preparation of transuranic elements, Q values of nuclear reactions. Fertile and fissile isotopes, chain reaction, stellar energy.

> Acids, Bases and Non Aqueous Solvents

Lowery-bronsted and Lewis concepts of acids and bases-introduction to SHAB principle. General properties- classification- self ionization and levelling effect- reaction in non-aqueous solvents - protic and aprotic non aqueous solvents- examples- solutions of metals in liquid ammonia- self ionization of liquid ammonia- liquid SO2, liquid HF, alkali metals in liquid ammonia

Organic Chemistry

<u>UNIT - I</u>

[1] Basics of Organic Chemistry

Structure and Bonding: Hybridization, bond lengths and bond angles, bond energy, localized and delocalized chemical bonding, van der Waals interactions, inclusion compounds, clatherates, charge transfer complexes, resonances, hyperconjugation, aromaticity, inductive and field effects, hydrogen bonding.

Mechanism of Organic Reactions: Curved arrow notation, drawing electron movements with allows, half-headed and double-headed arrows, homolytic and heterolytic bond fission, Types of reagents – electrophiles and nucleophiles, Types of organic reactions, Energy considerations. Reactive intermediates – Carbocations, carbanions, free radicals, carbenes, arynes and nitrenes (with examples). Assigning formal charges on intermediates and other ionic species. Methods of determination of reaction mechanism (product analysis, intermediates, isotope effects, kinetic and stereochemical studies).

[2] <u>Spectroscopy</u>

Ultraviolet (UV) absorption spectroscopy: absorption laws (Beer-Lambert law); molar absroptivity, presentation and analysis of UV spectra, types of electronic transitions, effect of conjugation. Concept of chromophore and auxochrome, Bathochromic, hypsochromic, hyperchromic and hypochromic shifts. U.V. spectra of conjugated enes and enones.

Infrared (I.R.) absorption spectroscopy: molecular vibrations, Hooke's law, selection rules, intensity and position of I.R. bands, measurement of I.R. spectrum, fingerprint region, characteristic absorptions of various functional groups and interpretation of I.R. spectra of simple organic compounds.

Nuclear magnetic resonance (NMR) spectroscopy: Proton magnetic resonance (1H NMR) spectroscopy, nuclear shielding and deshielding, chemical shift and molecular structure, spin-spin splitting and coupling constants, areas of signals, interpretation of 1H NMR spectra of simple organic molecules such as ethyl bromide, ethanol, acetaldehyde, 1, 1, 2-tribromoethane, ethyl acetate, toluene and acetophenone, Problems pertaining to the structures elucidation of simple organic compounds using UV, IR and 1H NMR spectroscopic, techniques.

[3] <u>Stereochemistry of Organic Compounds</u>

Concept of isomerism, Types of isomerism, Difference between configuration and conformation.

Optical isomerism: elements of symmetry, molecular chirality, enantiomers, stereogenic center, optical activity, properties of enantiomers, chiral and achiral molecules with two stereogenic centers, disasteromers, threo and erythro diastereomers, meso compounds, resolution of enantionmer, inversion, retention and recemization. Relative and absolute configuration, sequence rules, D & L and R & S systems of nomenclature.

Geometric isomerism: determination of configuration of geometric isomers, E & Z system of nomenclature, geometric isomerism in oximes and alicyclic compounds.

Conformational isomerism: conformational analysis of ethane and n-butane; conformations of cyclohexane, axial and equatorial bonds, conformation of mono substituted cyclohexane derivatives, Newman projection and Sawhorse formulae, Fischer and flying wedge formulae.

<u>UNIT - II</u>

[1] <u>Alkanes and Cycloalkanes</u>

IUPAC nomenclature of branched and unbranched alkanes, the alkyl group, classification of carbon atom in alkanes, Isomerism in alkanes, sources methods of formation (with special reference to Wurtz reaction, Kolbe reaction, Corey-House reaction and decarboxylation of carboxylic acids), physical properties and chemical reactions of alkanes, Mechanism of free radical halogenation of alkanes: orientation, reactivity and selectivity.

Cycloalkanes: Nomenclature, methods of formation, chemical reactions, Baeyer's strain theory and its limitations. Ring strain in small rings (cyclopropane and cyclobutane), theory of strain less rings. The case of cyclopropane ring, banana bonds.

[2] <u>Alkenes, Cycloalkenes, Dienes and Alkynes</u>

Nomenclature of alkenes, methods of formation, mechanisms of dehydration of alcohols and dehydrohalogenation of alkyl halids, regioselectivity in alcohol dehydration, The Saytzeff rule, Hofmann elimination, physical properties and relative stabilities of alkenes. Chemical reactions of alkenes, mechanism involved in hydrogenation, electrophilic and free radical additions, Markownikoff's rule, hydroborationoxidation, oxymercuration-reduction. Epoxidation, ozonolysis, hydration, hydroxylation and oxidation with KMnO4, Polymerization of alkenes, Substitution at the allylic and vinylic positions of alkenes, Industrial applications of ethylene and propene.

Methods of formation, conformation and chemical reactions of cycloalkenes, Nomenclature and classification of dienes, isolated, conjugated and cumulated dienes, Structure of allenes and butadiene, methods of formation, polymerization, 1, 2 and 1, 4 additions, Diels-Alder reaction.

Nomenclature, structure and bonding in alkynes, Methods of formation, Chemical reactions of alkynes, acidity of alkynes, Mechanism of electrophilic and nucleophilic addition reactions, hydroboration-oxidation, metal-ammonia reductions, oxidation and polymerization.

[3] <u>Arenes and Aromaticity</u>

Nomenclature of benzene derivatives, The aryl group, Aromatic nucleus and side chain, Structure of benzene; molecular formula and kekule structure, stability and carbon-carbon bond lengths of benzene, resonance structure, MO picture.

Aromaticity: The Huckle rule, aromatic ions.

Aromatic electrophilic substitution - general pattern of the mechanism, role of s and p complexes, Mechanism of nitration, halogenation, sulphonation, mercuration and Friedel-Crafts reaction. Energy profile diagrams. Activating and deactivating substituents, orientation and ortho/para ratio, Side chain reactions of benzene derivatives, Birch reduction; Methods of formation and chemical reactions of alkylbenzenes, alkynylbenzenes and biphenyl, naphthalene and Anthracene

[4] <u>Alkyl and Aryl Halides</u>

Nomenclature and classes of alkyl halides, methods of formation, chemical reactions, Mechanisms of nucleophilic substitution reactions of alkyl halides, S_N2 and S_N1 reactions with energy profile diagrams. Polyhalogen compounds : Chloroform, carbon tetrachloride;

Methods of formation of aryl halides, nuclear and side chain reactions; The addition-elimination and the elimination-addition mechanisms of nucleophile aromatic substitution reactions;

Relative reactivities of alkyl halides vs allyl, vinyl and aryl halides, Synthesis and uses of DDT and BHC.

[5] <u>Alcohols and Phenols</u>

Classification and nomenclature, Monohydric alcohols: nomenclature, methods of formation by reduction of Aldehydes, Ketones, Carboxylic acids and Esters, Hydrogen bonding, Acidic nature, Reactions of alcohols.

Dihydric alcohols: nomenclature, methods of formation, chemical reactions of vicinal glycols, oxidative cleavage [Pb(OAc)4 and HIO4] and pinacolpinacolone rearrangement. Trihydric alcohols: nomenclature, methods of formation, chemical reactions of glycerol.

Nomenclature, structure and bonding, preparation of phenols, physical properties and acidic character, Comparative acidic strengths of alcohols and phenols, resonance stabilization of phenoxide ion. Reactions of phenols: electrophilic aromatic substitution, acylation and carboxylation. Mechanisms of Fries rearrangement, Claisen rearrangement, Gatterman synthesis, Hauben-Hoesch reaction, Lederer-Manasse reaction and Reimer-Tiemann reaction.

[6] <u>Ethers and Epoxides</u>

Nomenclature of ethers and methods of their formation, physical properties, Chemical reactions - cleavage and autoxidation, Ziesel's method. Synthesis of epoxides, Acid and base-catalyzed ring opening of epoxides, orientation of epoxide ring opening, reactions of Grignard and organolithium reagents with epoxides.

[7] <u>Aldehydes and Ketones</u>

Nomenclature and structure of the carbonyl groups, synthesis of aldehydes and ketones with particular reference to the synthesis of aldehydes from acid chlorides, synthesis of aldehydes and ketones using 1, 3-dithianes, synthesis of ketones from nitrites and from carboxylic acids, Physical properties. Mechanism of nucleophillic additions to carbonyl group with particular emphasis on benzoin, aldol, Perkin and Knoevenagel condensations, Condensation with ammonia and its derivatives. Wittig reaction, Mannich reaction.

Use of acetals as protecting group, Oxidation of aldehydes, Baeyer-Villiger oxidation of Ketones, Cannizzaro reaction, MPV, Clemmensen, Wolff-Kishner, LiAlH₄ and NaBH₄ reductions. Halogenation of enolizable ketones An introduction to α , β - unsaturated aldehydes and Ketones.

[8] <u>Carboxylic acids and Derivatives</u>

Nomenclature, structure and bonding, physical properties, acidity of carboxylic acids, effects of substituents on acid strength, Preparation of carboxylic acids, Reactions of carboxylic acids, Hell-Volhard-Zelinsky reaction, Synthesis of acid chlorides, esters and amides, Reduction of carboxylic acids, Mechanism of decarboxylation.

Methods of formation and chemical reactions of halo acids, Hydroxy acids: malic, trartaric, citric acids. Methods of formation and chemical reactions of unsaturated monocarboxylic acids. Dicarboxylic acids: methods of formation and effect of heat and dehydrating agents.

Structure and nomenclature of acid chlorides, esters, amides (urea) and acid anyhydrides.

Relative stability of acyl derivatives, Physical properties, interconversion of acid derivatives by nucleophilic acyl substitution. Preparation of carboxylic acid derivatives, chemical reaction. Mechanisms of esterificaton and hydrolysis (acidic and basic)

[9] Organic Synthesis via Enolates

Acidity of α -hydrogens, alkylation of diethyl malonate and ethyl acetoacetate, Synthesis of ethyl acetoacetate: the Claisen condensation, Keto-enol tautomerism of ethyl acetoacetate. Alkylation of 1, 3-dithianes, Alkylation and acylation of enamines.

<u>UNIT - III</u>

[1] Organic Compounds of Nitrogen

Preparation of nitroalkanes and nitroarenes, Chemical reactions of nitroalkanes. Mechanisms of nuclephilc substitution in nitroarenes and their reductions in acidic, neutral and alkaline media, Picric acid.

Halonitroarenes: reactivity, Structure and nomenclature of amines, physical properties, Stereochemistry of amines, Separation of a mixture of primary, secondary and tertiary amines. Structural features effecting basicity of amines. Amine salts as phase-transfer catalysts, Preparation of alkyl and aryl amines (reduction of nitro compounds, nitrities), reductive amination of aldehydic and ketonic compounds, Gabriel-phthalimide reaction, Hofmann bromamide reaction. Reactions of amines, electrophilic aromatic substituton in aryl amines, reactions of amines with nitrous acid. Synthetic transformations of aryl diazonium salts, azo coupling.

[2] Organometallic Compounds

Organomagnesium compounds : the Grignard reagents, formation, structure and chemical reactions. Organozinc compounds: formation and chemical reactions.

Organolithium compounds: formation and chemical reactions.

[3] Organosulphur Compounds

Nomenclature, structural formation, methods of formation and chemical reactions of thiols, thioethers, sulphonic acids, sulphonamides and Sulphaguanidine.

[4] <u>Hetrocyclic Compounds</u>

Molecular orbital picture and aromatic characteristics of pyrrole, furan, thiophene and pyridine, Methods of synthesis and chemical reactions with particular emphasis on the mechanism of electrophilic substitution, Mechanism of nucleophilic substitution reaction in pyridine derivatives, Comparison of basicity of pyridine, piperidine and pyrrole.

Introduction to condensed five and six membered heterocycles, Preparation and reactions of indole, quinoline and isoquinoline with special reference to Fisher indole synthesis, Skraup synthesis and Bischler-Nepieralski synthesis, Mechanism of electrophilc substitution reactions of indole, quinoline and isoquinoline.

[5] <u>Carbohydrates</u>

Classification and nomenclature, Monosaccharides, mechanism of osazone formation, interconversion of glucose and fructose, chain lengthening and chain shortening of aldoses. Configuration of monosaccharides, Erythro and threo diastereomers, Conversion of glucose intro mannose, Formation of glocosides, ethers and esters, Determination of ring size of monosaccharides, Cyclic structure of D(+)-glucose, Mechanism of mutarotation.

Structures of ribose and deoxyribose

An introduction to disaccharides (maltose, sucrose and lactose) and polysaccharides (starch and cellulose) without involving structure determination.

[6] <u>Amino Acids, Peptides, Proteins and Nucleic Acids</u>

Classification, structure and stereochemistry of amino acids, Acid-base behaviour isoelectric point and electrophoresis, Preparation and reactions of α -amino acids, Structure and nomenclature of peptides and proteins, Classification of proteins, peptide structure determination, end group analysis, selective hydrolysis of peptides, classical peptide synthesis, solid-phase eptide synthesis, Structures of peptides and proteins, Levels of protein structure, Protein denaturation/ renaturation;

Nucleic acids : Introduction, constituents of nucleic acids, Ribonucleosides and ribonucleotides, The double helical structure of DNA.

[7] <u>Fats, Oils and Detergents</u>

Natural fats, edible and industrial oils of vegetable origin, common fatty acids, glycerides, hydrogenation of unsaturated oils, Saponification value, iodine value, acid value, Soaps, synthetic detergents, alkyl and aryl sulphonates.

[8] <u>Synthetic Polymers</u>

Addition or chain-growth polymerization, Free radical vinyl polymerization, ionic vinyl polymerization, Ziegler-Natta polymerization and vinyl polymers, Condensation or step growth-polymerization, Polyesters, plyamides, phenol formaldehyde resins, urea formaldehyde resins, epoxy resins and polyurethanes, Natural and synthetic rubbers, Elementary idea of organic conducting polymers.

[9] <u>Synthetic Dyes</u>

Colour and constitution (electronic Concept), Classification of dyes, Chemistry and synthesis of Methyl orange, Congo red, Malachite green, crystal violet, phenolphthalein, fluorescein, Alizarin and Indigo.